

<u>6. Schweizer Biomassegipfel</u> Stoffliche und energetische Nutzung von Biomasse aus Abfällen in Deutschland

Mengen, Technik und Beitrag zum Klimaschutz

Pratteln, 17. September 2010

Dr.-Ing. Michael Kern

Geschäftsführer

Witzenhausen-Institut GmbH

Gliederung

- 1. Einführung/Hintergrund
- 2. Bioabfallsammlung in Deutschland
- 3. Stand biologische Behandlung
- 4. Vergärung von Bioabfällen
- 5. Energetische Verwertung von holzigen Grünabfällen
- 6. Klimarelevanz Vergärung
- 7. FAZIT

Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH

gegründet als beratendes und planendes Ingenieurbüro 1989

Schwerpunkt: - Biologische Abfallbehandlung

- Biogasanlagen/Kompostierung
- Stoffstrommanagement
- Tagungen: Kassel Abfall- und Bioenergieforum

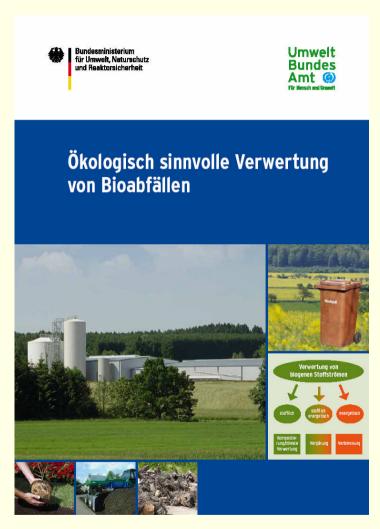
Aktuelle Projekte Witzenhausen-Institut

- Organisches Stoffstrommanagement -

Bund /Bundesländer:

- UBA / BMU
- Hessen
- Rheinland-Pfalz
- Berlin

Machbarkeitsstudien:


- Kreis Stendal
- Landkreis Hameln-Pyrmont
- Südliches Rheinland-Pfalz
- Stadt Oldenburg
- KDM, Düsseldorf
- Stadt Darmstadt
- Kreis Heinsberg
- Kreis Aachen
- Werra-Meißnerkreis
- Nordhausen
- Kreis Steinfurt

Anlagenplanung:

- Nassvergärung Bioenergiepark Fulda
- Biogasanlage Emsland
- Umrüstung Kompostwerk Ratingen, KDM Ratingen

Aktuelle Broschüre BMU/UBA

www.umweltbundesamt.de/uba-info-medien/3888.html

Was haben diese Bilder gemeinsam?

BIOMASSE

Energiemais – Bioabfall

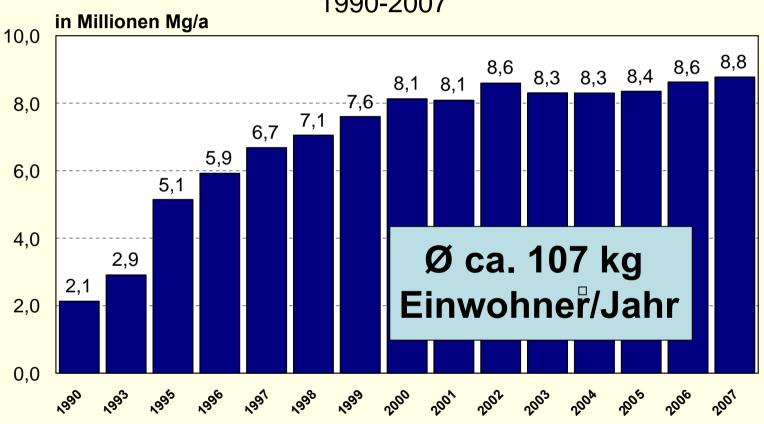
Gasertrag:

1 ha Energiemais (45 t FM) = ca. 70 t Bioabfall

Bioabfallaufkommen ca. 4 Mio. t Bioabfall

entsprechen dem Gasertrag von:

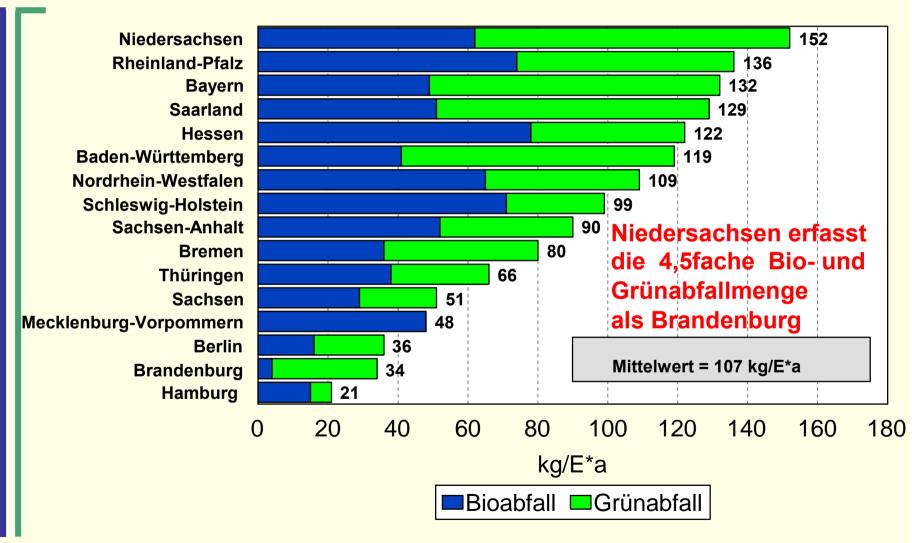
= ca. 2,6 Mio. t Energiemais = ca. 55.000 ha Energiemais



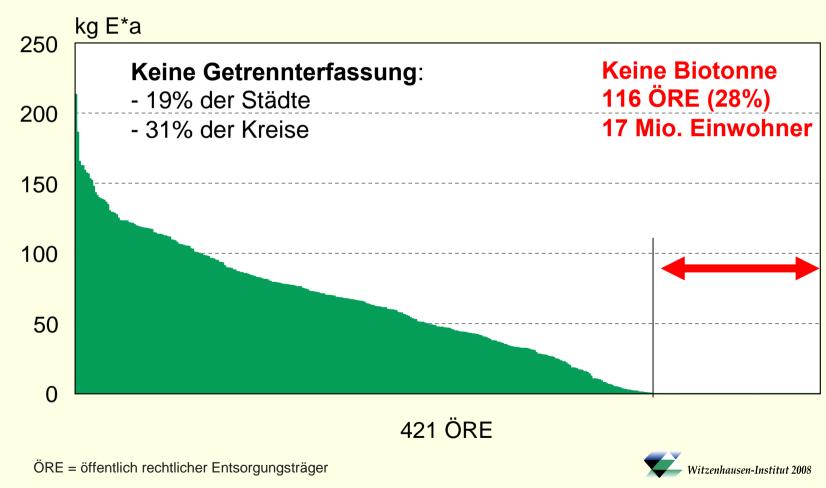
BIOABFALL-SAMMLUNG in Deutschland

Entwicklung des bundesweiten Bio- und Grünabfallaufkommens 1990-2007

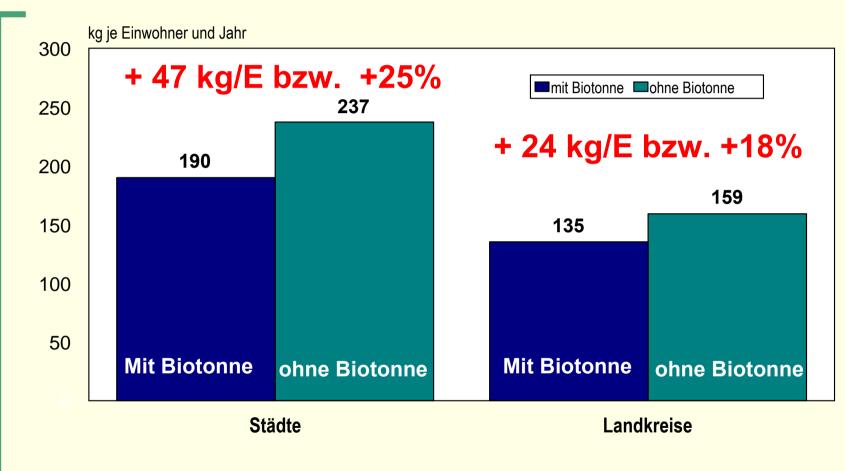
Datengrundlagen:


1995-2003: bvse Zahlen-Daten Fakten 2006

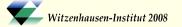
2004 - 2007: Abfallbilanzen der Länder, Auswertung Witzenhausen-Institut


Bio- und Grünabfallaufkommen 2007

Quelle: Eigene Auswertung auf der Grundlage der Abfallbilanzen der Länder



Bioabfall-Aufkommen 421 ÖRE (2006)



Spezifisches Hausmüllaufkommen Witzenhausen-Institut differenziert nach örE mit und ohne Biotonne

Datengrundlage: Abfallbilanzen der Länder 2006, eigene Erhebungen

örE ohne Biotonne oder kleiner/gleich 5 kg (Ew*a) Aufkommen organischer Abfälle werden als nicht angeschlossen bewertet

STAND DER BIOLOGISCHGEN ABFALLBEHANDLUNG

Biologische Abfallbehandlung in Deutschland

Verbrennung

Kompostierung

Vergärung

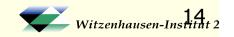
krautig

Baum- und Strauchschnitt

Grünabfälle (Winter/Sommer)

Landschaftspflegematerial

Bioabfall (ländlich/städtisch)


org. Gewerbeabfälle

Küchenabfälle Speiseabfälle

holzig

zunehmende Feuchte

Verwertung von biogenen Stoffströmen

stofflich

80-90%

Kompostierung/ direkte Verwertung

ca. 1.000Kompostierungsanlagen 11,2 Mio. Kapazität/a

10-15%

Vergärung

ca. 85
Vergärungsanlagen
1,7 Mio. Kapazität/*a

energetisch

???

Verbrennung

?

Umsetzung der Kompostierung

Offene Mietenkompostierung

Vollständig eingehauste Kompostierungsanlagen

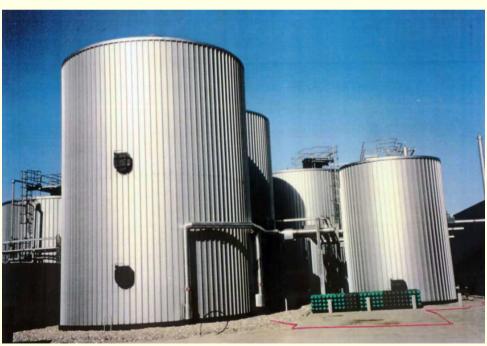
Witzenhausen-Institu

für Abfall, Umwelt und Energie Gm

Witzenhausen-Institut

für Abfall, Umwelt und Ene

Vergärung von Bioabfall


1 Mg Bioabfall = 80 – 150 Nm³ Biogas

1 Nm³ Biogas (ca. 55 - 65% Methan) = 6 kWh

Strom: 200 – 400 kWh

Wärme: 300 - 500 kWh

abzügl. Wärme + Strombedarf

Marktübersicht Vergärungsanlagen

Vergärungsverfahren

Fermentation Preßsaft

Trockenfermentation, diskontinuierlich

Nassfermentation

Trockenfermentation, kontinuierlich

Herzstück: der liegende Pfropfenstromfermenter

Energy Technologies GmbH & Co. KG

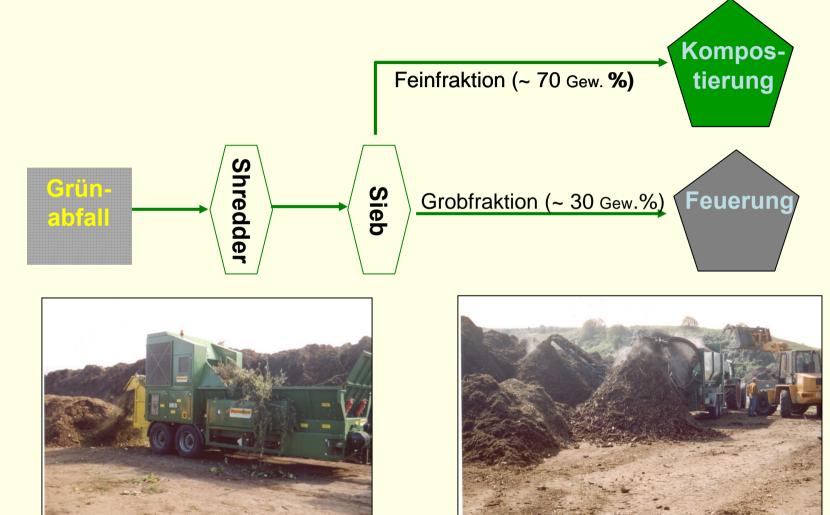
<u>Trockenfermentation nach dem</u> <u>Kompoferm®-Verfahren</u>

Gärstoffrest

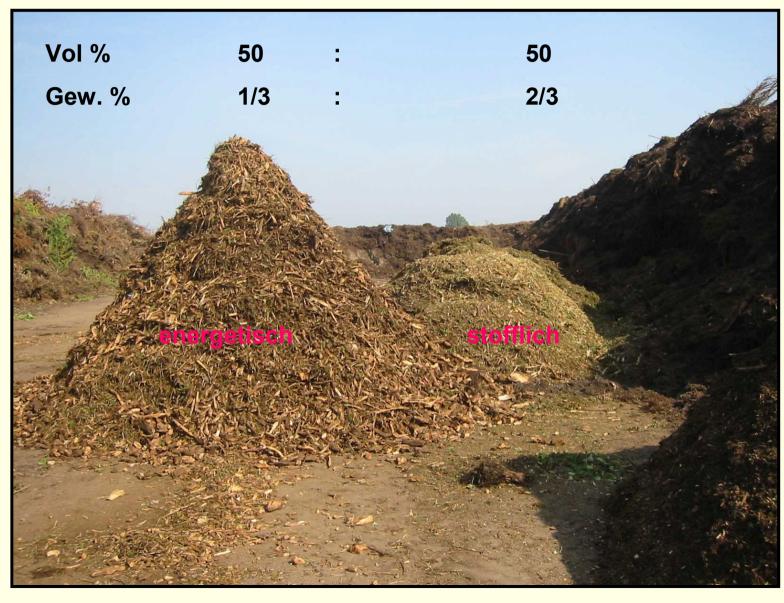
Biogasanlage als Vorschaltanlage vor der **Kompostierung**

Humus- und Erdenwerk Niddatal-Ilbenstadt

Luftbild



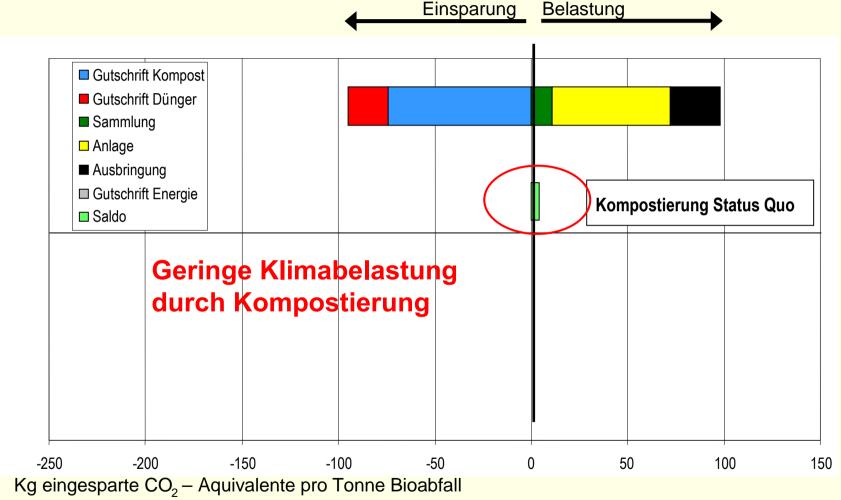
Energieerzeugung aus Grünabfall Witzenhausen-Institut für Abfall, Unrweit und Energie Gribh (Teilströme)


Aufbereitung und Verwertung von Grüngut

Ergebnis der Aufbereitung

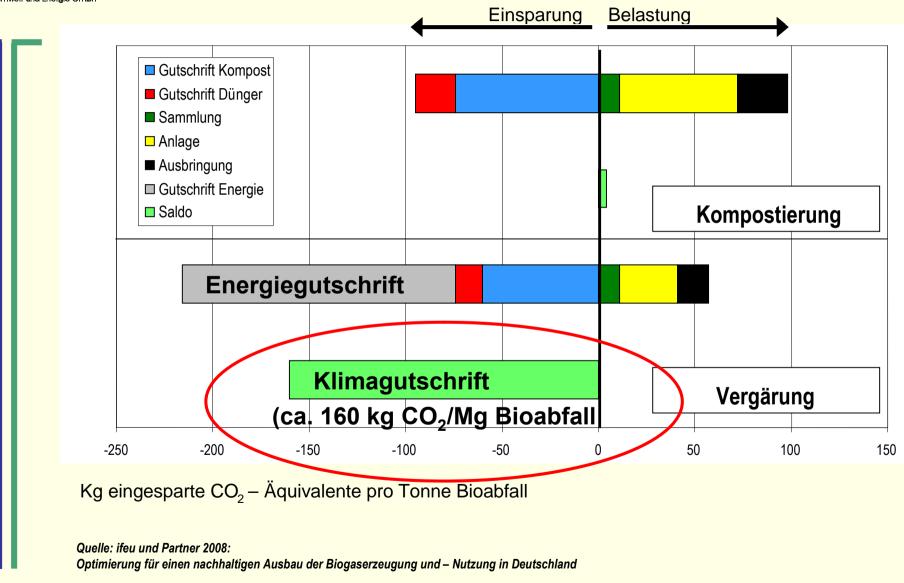
(grob geschreddert, Siebschnitt 30 mm)

Mischung von Waldholz mit aufbereiteten Grünabfällen vor der Zudosierung in die Verbrennung



Umwelt- und Klimabilanz

Klimagasbilanz



Quelle: ifeu und Partner 2008:

Optimierung für einen nachhaltigen Ausbau der Biogaserzeugung und - Nutzung in Deutschland

Klimagasbilanz

ÖKOBILANZ

Bewertung der Umweltwirkungen

UMWELTPROBLEMFELD	WIRKUNGKATEGORIEN
Treibhausgaseffekt	Treibhausgaspotenzail
Ressourcenverbrauch	Mineralische Rohstoffe
	Wasser
Energie	Erneuerbare Energie
	Nicht erneuerbare Energie
Eutrophierung	Eutrophierungspotenzial
Versauerung	Versauerungspotenzial
Photooxidantienbildung	VOC
	NMVOC
Ökotoxizität	Wirkfrachtpotenzial Wasser
	Wirkfrachtpotenzial
Humantoxitität	
Abfall	Siedlungs-, Sonder- u.
	Radioaktiver Abfall

FAZIT/AUSBLICK

- Weitere Bioabfallpotenziale können erschlossen werden
 - Biomasse im Restabfall
 - Steigerung der Grünabfallerfassung
- Energetische Verwertung holziger Abfälle
 - Vor oder nach dem Kompostierungsprozess (Siebüberlauf)
 (Sicherstellung Strukturanteil für Kompostierung)
- Vergärung hat i.d.R. klare ökologische Vorteile, da Stoff- und Energiekreislauf geschlossen werden
- Ziel:
 - **Organisches Stoffstrommamangent:**
 - Kompostieren Vergären Verbrennen Recycling
- Situation vor Ort Prüfen und optimieren

Die stoffliche <u>und</u> energetische Nutzung von Bioabfällen ist eine sinnvolle und i.d.R. wirtschaftliche Maßnahme zum Klima- und Ressourcenschutz

Vielen Dank

Witzenhausen-Institut

für Abfall, Umwelt und Energie GmbH

Werner-Eisenberg-Weg 1, 37213 WITZENHAUSEN Tel: 05542-9380-0 / www.witzenhausen-institut.de